Nombres réels, décimaux et flottants

Représentation des flottants sur des mots de taille fixe, mantisse, exposants

Tout nombre réel x <u>non nul</u> peut s'écrire sous la forme $s \times m \times 2^e$ où $s \in \{-, +\}$ est le signe de $x, m \in [1, 2[$ sa **mantisse**, en binaire, $e \in \mathbb{N}$ l'**exposant**.

On choisit ici de coder l'exposant sur 8 bits, en représentation décalée pour pouvoir représenter des nombres négatifs et positifs. Plus précisément, si l'exposant est x, on y ajoute 127 puis on code le nombre obtenu en binaire sur 8 bits; si on veut lire un tel exposant en binaire, on en calcule la valeur en base 10, puis on retranche 127. Quel est le plus petit exposant représentable? Le plus grand?

Puisque m commence nécessairement par 1, on omet cette information et ne considère que les 23 chiffres suivants. Tout nombre représenté l'est ainsi sur 32 bits, dans l'ordre signe - exposant - mantisse.

Le nombre 0 n'est pas représenté dans ce système, c'est pourquoi des exceptions sont introduites. Le nombre 0 est représenté par 10...0 et par 0...0.

Sur 64 bits, la mantisse est représentée par 52 bits, l'exposant sur 11 bits.

exercice

Que représente 0011010110101111000011000010110? Et 1010011110101111001000011000011? Comment représenter 145987? et 0,000006518?

Précision des calculs en flottants

On observe parfois des calculs erronés en Python.

Exemple 1

```
a=1/10

b = 3*a

Que vaut b?
```

Les seuls nombres représentables de manière exacte sont ceux exprimables avec un nombre fini (et suffisamment petit) de chiffres en base 2, ce qui n'est pas le cas de 1/10. La valeur stockée dans la variable a n'est donc pas égale à 1/10, c'en est une approximation.

Quelle est la représentation de 0.1 sur 32 bits?

Exemple 2 Calculer la somme des inverses des nombres de 1 à 10000, puis la même somme en partant des inverses des grands nombres vers les inverses des petits nombres. Obtient-on le même résultat? Et si on calcule la somme jusque n = 10000000?

```
def sum(n):
    res = 0
    for i in range(1,n+1):
        res+=1/i
    return res

def sum2(n):
```

```
res = 0
for i in range(1,n+1):
    res+=1/(n+1-i)
return res

n = 10000000
print(sum2(n)-sum(n))

D'où vient cet écart?
Observons le code suivant:

n = -64
a = 1+ 2**n
b = a-1
c = 1+ 2**n -1

print(a,b,c)

Qu'oberve-t-on?
Et si n est positif?
```

Dans le second cas, Python a travaillé avec des grands entiers, et fournit donc un résultat correct. Dans le premier, il doit travailler avec une représentation des nombres flottants.

Or pour n = -64, 2 * *n est très petit, et 1 + 2 * *n est trop proche de 1 pour en avoir une représentation distincte.

C'et ce qui permet d'expliquer également l'incongruité précédente : lorsqu'on ajoute les $\frac{1}{n}$, en partant de n petit, le dernier nombre que l'on ajoute est très petit par rapport à la somme déjà calculée, et risque de ne pas être pris en compte.

On veillera donc à :

- éviter d'additionner deux nombres d'ordres de grandeurs très différents (absorption)
- éviter les situations d'élimination : si on s'intéresse à la différence entre deux nombres de valeurs très proches, eux-même obtenus par calculs successifs, on peut obtenir un résultat manifestement faux.

```
n = -64
A = 1+2**n
B = 1-2**n
print(A,B,A-B)
```

Qu'observe-t-on?

- organiser le calcul des sommes pour ne pas avoir à ajouter à un nombre un autre beaucoup plus petit
- veiller à ce qu'un calcul, à défaut d'être exact, soit suffisamment proche du résultat attendu

Calcul d'une approximation de π

Soit P_n le polygone régulier à n côté inscrit dans un cercle de centre O, de rayon 1. L'aire de ce polygone est n fois celle de chaque triangle de sommets deux points consécutifs du polygone et O.

- 1. L'aire d'un tel triangle vaut (en fonction de n):
- 2. Vérifier que $\sin(\frac{x}{2}) = \sqrt{\frac{1 \sqrt{1 \sin^2(x)}}{2}}$
- 3. En déduire une relation de récurrence entre A_n et A_{2n}
- 4. Que vaut A_6 ?
- 5. Écrire une fonction qui, en utilisant la relation de récurrence ci-dessus calcule le nème terme de la suite des aires des polygones à $2^n \times 3$ côtés inscrits dans le cercle de rayon 1. Tracer la courbe de ces aires en fonction de n. Qu'observez-vous? Le résultat converge-t-il vers π comme attendu? D'ou provient l'erreur? Comment l'éviter?

Éléments de correction

- 1. L'aire d'un triangle OBC isocèle en O, dont les côtés OB et OC sont de longueur 1 et dont l'angle en O est $\frac{2\pi}{n}$ est : $\frac{1 \times (1 \times \sin(\frac{2\pi}{n}))}{2} = \frac{\sin(\frac{2\pi}{n})}{2}$. La somme des angles en O de ces triangles vaut 2π et il y en a n : l'angle en O de chacun est donc $\frac{2\pi}{n}$.
- 2. La vérification de $\sin(\frac{x}{2}) = \sqrt{\frac{1 \sqrt{1 \sin^2(x)}}{2}}$ peut se faire de différentes manières. Tout d'abord, le contexte et la présence de la racine impose que le sinus observé soit positif, on prend donc x positif et "suffisamment petit". Ensuite, pour tout x, $\cos^2(x) = 1 \sin^2(x)$. Dans le cadre présent, $\cos(x) \ge 0$, donc $1 \sqrt{1 \sin^2(x)} = 1 \cos(x)$. Par les relations trigonométriques, $\cos(x) = \cos(\frac{x}{2} + \frac{x}{2}) = \cos^2(\frac{x}{2}) \sin^2(\frac{x}{2}) = (1 \sin^2(\frac{x}{2})) \sin^2(\frac{x}{2}) = 1 2\sin^2(\frac{x}{2})$, ce dont on déduit que $\sqrt{\frac{1 \sqrt{1 \sin^2(x)}}{2}} = \sqrt{\frac{1 \cos(x)}{2}} = \sqrt{\frac{2\sin^2(\frac{x}{2})}{2}} = \sin(\frac{x}{2})$.
- 3. Ici, l'énoncé manque de précision (toutes mes excuses!). On peut donc penser que A_n est l'aire d'un des triangles associés à P_n . Dans ce cas l'aire A'_n de P_n est donnée par $A'_n = nA_n$.

D'après la question précédente, et puisque $A_n = \frac{\sin(\frac{2\pi}{n})}{2}$, on obtient $A_{2n} = \frac{\sin(\frac{2\pi}{2n})}{2} =$

$$\frac{\sqrt{\frac{1-\sqrt{1-\sin^2(\frac{2\pi}{n})}}{2}}}{2} = \frac{\sqrt{\frac{1-\sqrt{1-4A_n^2}}{2}}}{2}$$

4. Pour calculer A_6 , observons que chacun des six triangles que l'on peut former à partir de deux points consécutifs et de O est d'angle au sommet $\frac{\pi}{3}$. En conséquence, son aire vaut $\sin(\pi/3)$.

$$A_6 = \frac{\sin(\pi/3)}{2} = \frac{\sqrt{3}}{4}.$$

5. La tentation est grande d'opter pour une fonction récursive, mais alors le tracer de la courbe serait peu efficace : on devrait calculer A_6 , puis, pour calculer A_{12} , il faudrait encore calculer A_6 , etc.

On peut calculer à l'aide d'une boucle for les $A_{3\times 2^n}$ et les aires des polygones associés, puis ajouter ces derniers dans un tableau d'ordonnées, et renvoyer ce tableau.

```
def approxPi(m):
    aireTriangle = math.sqrt(3)/4
    aireT = 6*aireTriangle#aire dans le cas n = 1
    n = 6
    Aires = []
    Abs = []
    for i in range(1,m+1):
        aireTriangle = math.sqrt((1-math.sqrt(1-4*aireTriangle**2))/2)/2
        n = 2*n
        aireT = aireTriangle*n
        Aires.append(aireT)
        Abs.append(n)
    return Abs,Aires
```

```
#choix : tracer sans les abscisses Abs qui rendent illisible le graphe
def trace(n):
   abs,ord = approxPi(n)
   plt.plot(ord)
   plt.show()
```

Une valeur proche de π est bien trouvée, avant que l'algorithme ne fournisse des valeurs plus éloignées, pour finalement ne donner plus que des 0.

On a affaire ici à une situation d'élimination : lorsque l'aire A_n d'un petit triangle est très petite, la différence $1 - A_n$ est approximée en 1. L'aire A_{2n} vaut alors 0, et l'aire totale également.

Pour éviter cette situation, on peut utiliser la quantité conjuguée, c'est à dire observer

que
$$\sqrt{1-\sqrt{a}} = \sqrt{1-\sqrt{a}} \times \frac{1+\sqrt{a}}{1+\sqrt{a}} = \sqrt{\frac{1-a^2}{1+\sqrt{a}}}$$

Ici, $a^2 = 1-\sin^2(2\pi/n)$, avec $\sin(2\pi/n) \ge 0$. Alors $A_{2n} = \frac{|A_n|}{\sqrt{2(1+\sqrt{1-4A_n^2})}}$

```
def approxPi2(m):
    aireTriangle = math.sqrt(3)/4
    aireT = 6*aireTriangle
    # print(aireTriangle,aireT)
    n = 6
    Aires = []
    Abs = []
    for i in range(1,m+1):
        aireTriangle = valabs(aireTriangle) /
math.sqrt(2+ 2*math.sqrt(1-4*aireTriangle**2))
        n = 2*n
        aireT = aireTriangle*n
        Aires.append(aireT)
        Abs.append(n)
    return Abs,Aires
```